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Abstract

We present a finite element analogue to the second-order, finite difference scheme for the solution of the heat diffusion
equation in strongly magnetised plasmas given in Günter et al. [S. Günter et al., J. Comp. Phys. 209 (2005) 354]. Compared
to standard finite element or finite difference formulations it strongly reduces the pollution of perpendicular heat fluxes by
parallel ones even without resorting to field-aligned coordinates. We present both bi-linear and bi-quadratic versions of
this scheme as well as a fourth-order extension of the original difference scheme of Günter et al. (2005). In the second part
of the paper, we address the formulation of the boundary conditions at walls with an oblique incidence of field lines and the
treatment of the coordinate singularity at r = 0 in cylindrical, or topologically equivalent coordinates with the reduced-pol-
lution finite difference scheme. All tests shown indicate that both the finite-difference and the finite-element versions of the
scheme should substantially alleviate the requirement for field-alignment of the coordinates over the realistic range of vi/v^
in toroidal magnetic confinement devices.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In Ref. [1], we presented a second-order correct finite difference scheme for the solution of the heat conduc-
tion equation in strongly magnetised plasmas, which reduces significantly the pollution of perpendicular heat
transport by numerical errors in the evaluation of the parallel one. Although a choice of the coordinate system
aligned as well as possible with the magnetic flux surfaces or field lines remains indicated for a number of rea-
sons outlined in the following, the scheme developed was shown to be tolerant to the violation of this require-
ment, even for completely unaligned coordinates, and values of the heat conductivity ratio up to vi/v^ = 109 in
plane and 1012 in periodic cylinder geometry. We compared the scheme with other schemes at hand of well-
known 2D test cases [1,2] in Cartesian coordinates, and showed 3D applications to the problem of transport
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across magnetic islands and regions of ergodic field lines utilizing a combined finite difference – Fourier rep-
resentation in cylinder coordinates.

A major criticism to the scheme was that is was not apparent how it could be utilized in the frame of a finite
element representation, like used in most nonlinear MHD codes. We present in this paper such a formulation
for bi-linear and bi-quadratic basis functions, and give also the extension of the finite difference version to
fourth-order accuracy. In the second part, we address two practical problems arising from the implementation
of the physically proper boundary conditions at material walls and from the singularity arising at the axis in
cylindrical or topologically equivalent coordinates. Unless indicated otherwise, we use the nomenclature and
the labelling of grid points as in Fig. 1 of Ref. [1] throughout this paper.
2. Generalisation of the scheme

2.1. Finite element formulation

The difference scheme described in Ref. [1] and further developed below in this paper has been shown to be
successful even in cases of extremely anisotropic heat transport problems. One main application for such a
scheme are non-linear MHD simulations, where tolerance of a scheme to misalignment between coordinate
and magnetic field lines would become a particular asset. As most of the existing non-linear MHD codes
(see e.g. [2,3]) are based, however, on a finite element approach it is desirable to develop also a finite element
scheme with similar properties as our finite difference formulation.

In a finite element framework the stationary heat conduction equation with constant heat diffusivities is
reformulated as
Z

vijr �~qdV ij ¼ �
Z
rvij �~q dV ij ¼

Z
nðvk � v?Þðrvij �~bÞð~b � rT ÞdV ij þ

Z
nv?rvij � rT dV

¼
Z

vijQdV ij ð1Þ
(for simplicity Dirichlet boundary conditions have been used) with the test functions vij. The temperature is
approximated by a linear combination of local expansion functions
T ¼
X

kl

vklT kl ð2Þ
and – in the usual case of conforming elements – derivatives are expressed through differentiation of the
expansion functions. Calculations in Ref. [2] have shown, however, that this scheme requires high order ele-
ments to give satisfactory results for vi/v^-ratios approaching realistic values.

To ensure a proper description of the heat flux parallel to the magnetic field lines already with lower-order
finite elements, we investigated the use of a hybrid approach, defining a quantity ~qk through
Z

cijð~qk �~b � rT ÞdV ij ¼ 0 ð3Þ
taking the test functions cij and the expansion functions for ~qk as one order lower than the local basis functions
for the temperature vij. Instead of a separate representation of the two components of the heat fluxvi$T, pro-
jected point wise onto ~b this implies a finite element representation of ~qk like a scalar quantity. As usual in
hybrid finite element schemes, the corresponding expansion and test functions for ~qk are discontinuous at
the element borders. The difference between the two representations corresponds to a truncation error contri-
bution of the same order as the one implied by the choice of elements for T, and should hence not dominate its
error scaling. On the other hand this special treatment of the parallel heat flux appears essential for allowing
the parallel temperature gradient to vanish exactly for vi/v^!1. The choice bears analogy to our finite dif-
ference treatment, where it was found essential to define both components of the heat flux vector ~qk in the
same grid points and express them through the same temperature grid values to greatly reduce numerical er-
rors associated with anisotropy. The heat transport equation is then formulated like:
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Z
vijr �~qdV ij ¼ �

Z
rvij �~qdV ij ¼

Z
nðvk � v?Þðrvij �~bÞ~qk dV ij þ

Z
nv?rvij � rT dV

¼
Z

vijQdV ij ð4Þ
We have implemented this scheme using both bi-linear and bi-quadratic test functions vij for T over quadri-
lateral elements, using Gaussian integration of appropriate order to evaluate the integrals. The expansion
functions cij of ~qk in the two cases become constants or bi-linear functions, respectively. We compared our
hybrid approach with the standard one with conforming finite elements, using an own code for the bi-linear
case, and results of Ref. [2] covering up to bi-quintic finite elements. As test case we use the NIMROD test prob-
lem, already used by us in Ref. [1], which allows an analytic solution: taking a 2D magnetic field configuration
derived from a flux function as ~B ¼~ez �rw, and choosing a heat source satisfying Q(x,y) = �v^$2w(x,y),
ensures, together with appropriate boundary conditions, that the true solution will be a constant on field lines,
irrespective of the value of vi/v^ [2]. The functional form chosen for w(x,y), T(x,y) in our case is sin(px) Æ cos(py),
over the interval�0.5 6 x, y 6 0.5, together with Dirichlet boundary conditions. The relative errors quoted refer
to the temperature value at the centre: |T(0, 0)�1 � 1|, corresponding also to the magnetic axis. Fig. 1 shows the
results for the NIMROD test problem with the lowest order implementation of the above scheme. As for the finite
difference scheme, the numerical errors are found not depend on vi/v^ and are similar to those of our second-order
accurate finite difference scheme.
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der is referred to the web version of this article.)



S. Günter et al. / Journal of Computational Physics 226 (2007) 2306–2316 2309
Results shown in Fig. 1a–c correspond to vi/v^-ratios of 103, 106 and 109, respectively. Already for the low-
est value of this ratio, both the bi-linear and the bi-quadratic versions of the hybrid scheme have errors which
are one to two orders of magnitude smaller than their conforming counterparts. For vi/v^ = 106 conforming
bi-linear elements become totally unacceptable. Bi-linear hybrid elements perform already better than bi-qua-
dratic conforming ones and bi-quadratic hybrid better than conforming bi-cubic ones. This trend is further
increased going to higher values of vi/v^, as the error for the hybrid element calculations practically does
not change between 106 and 109, whereas it increases strongly for the conforming element cases.

2.2. A fourth-order finite difference formulation

The finite difference scheme described in Ref. [1] is accurate to second order only. It can be readily extended
to fourth-order; however, as we show here for the case of Cartesian coordinates in two dimensions. It is based
on an expansion of the temperature up to third-order in each direction:
T ðDx;DyÞ ¼ T ð0; 0Þ þ a10Dxþ a01Dy þ a11DxDy þ a20ðDxÞ2 þ a02ðDyÞ2 þ a12DxðDyÞ2 þ a21ðDxÞ2Dy

þ a22ðDxÞ2ðDyÞ2 þ a13DxðDyÞ3 þ a31ðDxÞ3Dy þ a23ðDxÞ2ðDyÞ3 þ a32ðDxÞ3ðDyÞ2

þ a33ðDxÞ3ðDyÞ3 ð5Þ

where we define – as in Ref. [1] – the temperatures at the grid points and the heat fluxes at intermediate grid
points. Again we use the freedom of adding terms leading to higher order (fifth and above) corrections to en-
sure that both components of the parallel heat flux are defined in the same grid points. This leads to the
expression
~qkiþ1=2;jþ1=2 ¼ �nvk~b � ð~b � rxT þ~b � ryT Þjiþ1=2;jþ1=2

¼ �nvkfbx; byg
bx

iþ1=2;jþ1=2

384Dx
ð243ðT iþ1;jþ1 þ T iþ1;j � T i;jþ1 � T i;jÞ

�

þ 27ðT i;jþ2 þ T i;j�1 � T iþ1;jþ2 � T iþ1;j�1Þ þ 9ðT i�1;jþ1 þ T i�1;j � T iþ2;jþ1 � T iþ2;jÞ

þ ðT iþ2;jþ2 þ T iþ2;j�1 � T i�1;jþ2 � T i�1;j�1ÞÞ þ
by

iþ1=2;jþ1=2

384Dy
ð243ðT iþ1;jþ1 � T iþ1;j þ T i;jþ1 � T i;jÞ

� 9ðT i;jþ2 � T i;j�1 þ T iþ1;jþ2 � T iþ1;j�1Þ � 27ðT i�1;jþ1 � T i�1;j þ T iþ2;jþ1 � T iþ2;jÞ

þ ðT iþ2;jþ2 � T iþ2;j�1 þ T i�1;jþ2 � T i�1;j�1Þ
��

ð6Þ
for the parallel heat flux and to
r �~qkji;j ¼
1

384

~ex; 0f g
Dx

243 ~qkiþ1=2;jþ1=2 þ~q
k
iþ1=2;j�1=2 �~q

k
i�1=2;jþ1=2 �~q

k
i�1=2;j�1=2

� ���

þ27 ~qki�1=2;jþ3=2 þ~q
k
i�1=2;j�3=2 �~q

k
iþ1=2;jþ3=2 �~q

k
iþ1=2;j�3=2

� �
þ 9 ~qki�3=2;jþ1=2 þ~q

k
i�3=2;j�1=2

�

�~qkiþ3=2;jþ1=2 �~q
k
iþ3=2;j�1=2

�
þ ~qkiþ3=2;jþ3=2 þ~q

k
iþ3=2;j�3=2 �~q

k
i�3=2;jþ3=2 �~q

k
i�3=2;j�3=2

� ��

þ
0;~ey

� 	
Dy

243 ~qkiþ1=2;jþ1=2 �~q
k
iþ1=2;j�1=2 þ~q

k
i�1=2;jþ1=2 �~q

k
i�1=2;j�1=2

� ��

�9 ~qki�1=2;jþ3=2 �~q
k
i�1=2;j�3=2 þ~q

k
iþ1=2;jþ3=2 �~q

k
iþ1=2;j�3=2

� �

�27 ~qki�3=2;jþ1=2 �~q
k
i�3=2;j�1=2 þ~q

k
iþ3=2;jþ1=2 �~q

k
iþ3=2;j�1=2

� �

þ ~qkiþ3=2;jþ3=2 �~q
k
iþ3=2;j�3=2 þ~q

k
i�3=2;jþ3=2 �~q

k
i�3=2;j�3=2

� ��

ð7Þ
for its divergence.
We have tested this fourth-order scheme again for the above test case proposed by the NIMROD team. To

avoid the problem of the specification of additional (unphysical) boundary conditions for the fourth-order
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scheme, we reduce the formulation to the second-order one described in Ref. [1] over the outermost two grid
cells. Fig. 2 gives the results for values of vi/v^ = 106 and 109 for both the second- and the fourth-order
scheme, showing the expected improvement by the latter (except for the lowest resolution case, where the
fourth-order schemes error is dominated by the implementation of the boundary conditions). The discretisa-
tion error for both schemes is again independent of the ratio vi/v^. For the higher numbers of grid points and
high values of vi/v^, the fourth-order scheme becomes, however, very susceptible to round-off errors, requiring
improved (16 instead of 8-byte) precision to realize its potential accuracy.

3. Treatment of general boundary conditions and coordinate singularities

The test cases presented in Ref. [1] used Dirichlet boundary conditions, and were formulated in either
Cartesian coordinates or in cylindrical coordinates using, in the latter case a Fourier description in both poloi-
dal (h)- and axial (z)-direction. Complications arise in the more general case, when prescriptions involving the
conductive heat flux have to be applied at the boundary, or if cylindrical (or topologically equivalent) coor-
dinates are used in 2D or 3D finite difference formulations including the point r = 0. In this section, we dem-
onstrate that the developed finite difference scheme is able to deal with such realistic boundary conditions.

3.1. Realistic boundary conditions for magnetised plasmas

In the general case flux surfaces or field lines will cross the computational boundary. The boundary con-
ditions to be applied in that case will be of a mixed (Robin)-type and will typically be dominated by the physics
of the parallel heat flux. In particular, if the walls are assumed to correspond to material surfaces the boundary
conditions will be given by the well-known Bohm-type condition [4,5]:
�~b �~ewnevk~b � rT ¼ dknecskBT~b �~ew ð8Þ
where~ew is the unit vector perpendicular to the wall, pointing outward,~b the unit vector along the field lines, di
the so-called sheath transmission factor and cs the ion sound speed. For field lines nearly tangent to the walls
the much smaller perpendicular heat transport has also to be included to remove the singularity otherwise aris-
ing for ~b �~ew ¼ 0. We therefore write, in the general case the boundary condition in the form
�~b �~ewðvk=v? � 1Þ~b � rT �~e? � rT ¼ deff T ð~b �~ew þ e?Þ ð9Þ
where deff ¼ dkcskB=v?, and e^ is a usually small number characterising the heat flux into the wall perpendic-
ular to field lines.



Fig. 3. Temperature iso-contours (arbitrary units) in the poloidal cross-section of a divertor tokamak with assumed spatially constant heat
source, computed with a second-order correct finite difference scheme and equidistant grid in r, z with 1024 · 2048 grid points, vi/v^ = 108,
deff = 104, e^ = 10�3. The – spatially varying – ratio of the poloidal to toroidal magnetic field, determining the effective value of vi/v^ in the

two dimensions is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

r þ B2
z

� �
= B2

r þ B2
z þ B2

u

� �r
¼ 0:11 at the outer outboard separatrix at the midplane (r = 2.22, z = 0).
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The above boundary conditions are of Robin-type, which relate derivative and function values at the same
grid point. As in our scheme the gradients are defined in the intermediate grid points only, we express them at
the boundary points (i, j) by:
rT ji;j �~ex ¼
1

2
rT ji�1=2;j�1=2 � ~ex;~ey

� 	
þrT ji�1=2;jþ1=2 � f~ex;�~eyg

� �

¼ ðT i;j þ T i;j�1Þ � ðT i�1;j þ T i�1;j�1Þ
4Dx

� f~ex;~eyg þ
ðT i;j þ T i;jþ1Þ � ðT i�1;j þ T i�1;jþ1Þ

4Dx
� f~ex;�~eyg

ð10Þ
A useful test example is given by the magnetic field configuration used in Fig. 3, which shows a poloidal cut
through the separatrix-limited plasma of a divertor tokamak, whose divertor plates coincide with sections of
the rectangular computational boundary. For generality, a geometry with two X-points, lying on non-coinci-
dent magnetic flux surfaces, is chosen. A heat source, spatially constant over the whole computational domain
was assumed for this test case. This formulation, together with the above-mentioned boundary conditions, and
realistically high values of vi/v^ results in the formation of a thin, nearly flux-surface aligned boundary layer
(the ‘‘scrape-off layer’’ [6] – SOL) along the inner separatrix. In codes addressing specifically transport in the
edge region [7–9], this zone would typically be treated using coordinates aligned with the flux-surfaces. Using
simple cylindrical coordinates r, z, u, with u the (ignorable) toroidal coordinate is therefore a realistically se-
vere test case for our present scheme.
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Realistic values of heat conductivity in the edge region of tokamak plasmas correspond to ratios of vi/v^ in
the range of 108. As we make use of the toroidal symmetry which reduces the problem to a 2D geometry, an

effective heat conductivity ratio vk=v? � B2
r þB2

z

� �
= B2

r þB2
z þB2

u

� �
enters actually into the calculations as a

measure of the anisotropy. The poloidal to toroidal field ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

r þ B2
z

� �
= B2

r þ B2
z þ B2

u

� �r
in a given toka-

mak varies over space (in particular vanishing at the axis and the stagnation point on the separatrix) and
depends also on operating parameters. For the case shown here, its value at a reference point taken at the
intersection of the outside separatrix with the mid-plane was 0.11.

The temperature distribution calculated like this is shown in Fig. 3 in the form of iso-contours. They show
the expected formation of two scrape-off layers around the two separatrix flux surfaces. The vanishing of the

effective heat conductivity ratio vk=v? B2
r þ B2

z

� �
= B2

r þ B2
z þ B2

u

� �
in the proximity of the stagnation points

causes there visibly significant temperature gradients along the flux surfaces open towards the wall. (At the
lower stagnation point, even a local maximum of T arises, which is, however, a – numerically correct – con-
sequence of our unphysical assumption of a spatially constant heat source also outside the separatrix.)

A cross-sectional cut of the temperature profile across the z = 0 plane shows (Fig. 4) that the scrape-off
layer region is the numerically most demanding region of the calculations. In fact, a minimum number of grid
points is required to resolve it, as otherwise oscillations arise. This is clearly a strong argument for using a
coordinate system allowing grid meshing in this region (or using a non-structured grid), which would of course
be the case if flux surface coordinates were to be used.

Without an adapted grid, use of a higher order scheme for this problem is not advantageous. The exis-
tence of the scrape-off layer introduces – albeit over a limited space region – a characteristic dimension per-
pendicular to flux surfaces which has to be resolved by a sufficient number of grid points. This annihilates
most of the potential benefit of a higher order scheme, as one cannot use it to increase significantly the grid
interval.
3.2. Use of cylindrical coordinates including the r = 0 coordinate singularity

In practice, even for the above 2D example one would therefore use a coordinate system which is aligned at
least approximately with the magnetic flux surfaces. Apart from advantages deriving from a better separation
of parallel and perpendicular heat fluxes, this would allow also to apply meshing around critical flux surfaces,
like – for the above example – around the separatrix region. Such coordinate systems share with cylinder coor-
dinates (taken now in r, h, z, with z substituting the toroidal direction) the property that a coordinate singu-
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larity appears at r = 0. To clarify the issues arising form this coordinate singularity we can use polar coordi-
nates (r,h), with the point r = 0 inside the computational region. The corresponding parallel heat fluxes,
defined again at the intermediate grid points, are given by
Fig. 5.
displac

Fig. 6.
fixed r
~qkiþ1=2;jþ1=2¼� nvk~b � ð~b � rrT þ~b � rhT Þjiþ1=2;jþ1=2

¼�nvkfbr;bhg br
iþ1=2;jþ1=2

ðT iþ1;jþ1 þ T iþ1;j� T i;jþ1 � T i;jÞ
2Dr

þ bh
iþ1=2;jþ1=2

ðT iþ1;jþ1 þ T i;jþ1 � T iþ1;j� T i;jÞ
2Dhriþ1=2;jþ1=2

� �

ð11Þ
The divergence of the heat flux (except in the central point) is defined by
r�~qji;j¼
1

2ri;j

f~er;0g
Dr

riþ1=2;jþ1=2~q
k
iþ1=2;jþ1=2þ riþ1=2;j�1=2~q

k
iþ1=2;j�1=2� ri�1=2;jþ1=2~q

k
i�1=2;jþ1=2� ri�1=2;j�1=2~q

k
i�1=2;j�1=2

� ��

þ 0;~ehf g
Dh

~qkiþ1=2;jþ1=2þ~q
k
i�1=2;jþ1=2�~q

k
iþ1=2;j�1=2�~q

k
i�1=2;j�1=2

� �

ð12Þ
These expressions show, of course, a singular behaviour at the central points r1,j = r = 0. To eliminate this sin-
gularity, we derive the equation for r = 0 from integration of the heat flux equation over the volume inside r1/2
Z 2p

0

dh
Z r1=2

0

r drr �~q ð13Þ
1.00

0.99

0.98

T(r)

r cosθ
- 0.2 - 0.1 0.0 0.1 0.2 0.3 0.4

Temperature profile across the sinh = 0 line for a test example computed in cylindrical r, h-coordinates, with circular flux surfaces
ed with respect to the coordinate origin. Case shown refers to 50 · 150 grid points in r, h, respectively, and vi/v^ = 109.
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That way we find the following result for the equation for r = 0:
Fig. 7.
for vi/
using r

Fig. 8.
radial
ðvk � 1Þ 2

r1=2

1

N h

XNh

j¼1

f~er; 0g~qk1=2;j�1=2 þ v?
2

r1=2

1

N h

XNh

j¼1

q?1=2;j�1=2 ¼ Q0 ð14Þ
A simple, but severe test for this procedure can be constructed considering both circular coordinate and flux
surfaces, but shifting the origin of the two with respect to the each other. For the present example we use a

magnetic field described by the magnetic flux function: Wðr; hÞ ¼ ðr cos h� 0:1Þ2 þ r2 sin2 h
� �3=2

with magnetic

field components defined by br ¼ 1
r

oW
oh , bh ¼ � oW

or , and a heat source given by Q = 9 Æ (W(r,h))1/3, looking for a
solution in the region (0 6 r 6 1,0 6 h 6 2p). The boundary conditions at r = 1 are taken as Dirichlet condi-
tions using the known analytical solution T(r,h) = 1 � W(r,h). The consistency of this procedure is illustrated
by the temperature profile taken at sinh = 0 given in Fig. 5, which shows no visible influence of the coordinate
singularity at r = 0 on the solution. The scaling of the error with grid size (Fig. 6) is affected by several effects,
in particular also by the intersection of the boundary by the field lines and the imposition of the analytical
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Radial cut of the temperature distribution for a magnetic field configuration with an island, for the h-value of the O-point (h = 0),
v^ = 106. The results are overlayed for two grid resolutions without meshing, with Nr = Nh = 128 and 1024, respectively, and a case
adial meshing, with Nr = 128 and Nh = 1024.
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solution on it, which has stronger effect for high vi/v^. Probably for this reason, the numerical error for a mod-
est number of grid points is actually smaller in the case of higher vi/v^, but approaches the results for lower
values of vi/v^ if a sufficient number of grid points is taken.

One prime reason for the choice of (approximately) aligned coordinates is the easy possibility of effective
meshing. To illustrate this in the context also of the finite difference formulation in r, h (it had been shown in
Ref. [1] already for the case of Fourier decomposition in the poloidal angle h) in a simple model we consider a

cylindrical 2D plasma with flux surfaces given by Wðr; hÞ ¼ ðr2 � r2
s Þ

2 þ 0:02r2ð1� r2Þ cos h producing a mag-
netic island at rs = 0.6. (Comparing these cases to the physically more realistic model of a single helicity res-
onant perturbation of an infinite aspect ratio, circular cross-section tokamak, which can also be treated as

rigorously 2D, one has to multiply the values of vi/v^ used here by a factor of qs

e �
q

qs�q

� �2

, where q and qs

are the local and resonant values of the so-called safety factor q ¼ e Bu

Bh
, and e the local aspect ratio. This factor

typically is of O(102)). The heat source used is Q = 15,000r3 � 4500r2 + 60 for r 6 0.2 and Q = 0 beyond. In a
radial cut through the O-point of the island (Fig. 7), the high parallel heat conductivity results in the formation
of a plateau in the temperature profile, with very large radial second derivatives at its boundaries. Like in the
problem of Figs. 3 and 4, these regions have to be well resolved, which can be accomplished with less effort if
meshing in the corresponding regions of r is used. The plot of the global temperature profile shows hardly a
dependence on the grid resolution, but a closer inspection of the near-separatrix region of the magnetic island,
or a plot of the local error at the most sensitive point (Fig. 8) shows an improvement with grid number or
meshing. As the thickness of the boundary layer forming around the island separatrix decreases with increas-
ing vi/v^, the resolution requirements, respectively the error increase with this parameter.

4. Conclusions

We have shown how to transfer the basic concept of the scheme presented in Ref. [1] for the treatment of
the heat conduction problem in strongly magnetized plasmas also to a finite element formulation. The favour-
able properties regarding the suppression of pollution of the perpendicular by the parallel heat transport can
be conserved, provided a proper hybrid formulation is used. Both the finite difference scheme of Ref. [1] and
the finite element formulation of the present paper can be readily extended also to higher orders, albeit requir-
ing in this case – for large values of vi/v^ and a large number of grid points – the use of higher precision in the
matrix solver.

The favourable pollution properties, however, do not eliminate the need to resolve spatially well the regions
with large second derivatives in T perpendicular to the flux surfaces, arising, in particular in boundary layers
around the separatrix of divertor tokamaks, or around magnetic islands at resonant flux surfaces. This gives a
strong motivation to use coordinates, at least approximately adapted to the flux surfaces, to allow localized
fine-meshing of the grid. If, in addition, one coordinate line x1 is chosen so as to follow approximately the

field lines, the effective ratio of vi/v^ is reduced by a factor ~B�rx1
� �2

= ~B �~B
� �

. The benefit of our present
scheme in the latter case is the greater tolerance to misalignment between ~B and $x1, making it well suited
to nonlinear MHD codes – where it would be excessively cumbersome to adjust the coordinate system con-
tinuously to the magnetic field configuration – and to problems including regions of ergodised field lines. This
feature has in fact been already exploited in Ref. [10], for the study of heat transport in the magnetic field of an
infinite aspect ratio tokamak with circular plasma cross-section perturbed by several helical perturbations,
using – in contrast to Ref. [1] – a 2D grid and a Fourier representation of the perturbations in the third
direction.
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